M E M B R A N E S

75%

CCS

and

materials

worldwide.

complete

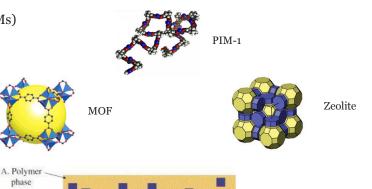
conducted

OVERVIEW

Membranes offer the **following advantages:**

- A smaller footprint on the plant layout
- · Modular operation: flexibility and linear scale-up costs
- No need for solvent or regeneration
- Fewer waste disposal issues

MEMBRANE MATERIALS


Organic

Inorganic • Zeolites

Combination

- Polymers of intrinsic microporosity (PIMs)
- Thermally rearranged polymers

Metal-organic frameworks (MOFs)

of the costs

selectivity

process.

At

with

is

UoE,

Membrane processes have the potential to reduce

the overall cost of CO_a separations, which account for

to optimise membrane processes for carbon capture.

for

being

the

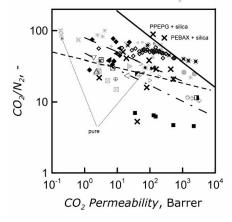
Research into new

higher permeability

we are looking at ways

INSTRUMENTATION

The Porometer 3G zh allows for:


Mixed-matrix membranes

• Pore size measurement of flat membranes and membrane modules

B. Inorganic particle phase

Direct measurement of pure gas permeability

Robeson plot shows the trade-off between permeability and selectivity Bernardo et al., Ind. Eng. Chem. Res. 2009, 48, 4638

Permeation Cell

- Measures single component gas permeability and diffusivity.
- Can be integrated with mass spectrometer to measure binary mixture permeability.
- Measures permeability changes in mixtures.

For further information, please contact: m.ferrari@ed.ac.uk www.eng.ed.ac.uk/carboncapture

PEOPLE/COURSES

Dr Maria-Chiara Ferrari is the Science & Innovation Award Lecturer in Membranes for Carbon Capture. She is developing a new MSc course called "Gas Separation Using Membranes".

Main topics:

- Industrial application of membranes
- Membrane types and transport phenomena
- Module configurations and separation process layout