Single Pellet DP-PSA Experiments for the Characterisation of Heat and Mass Transfer Parameters

Wenli Dang, Daniel Friedrich, Stefano Brandani SCCS, School of Engineering, University of Edinburgh S.Brandani@ed.ac.uk

http://www.eng.ed.ac.uk/carboncapture/

Overview of DP-PSA system

Aim

Extract heat and mass transfer information from temperature data of the single pellet DP-PSA system

Experimental system

 Closed system with two independently controlled pistons:

Figure 1. Dual-Piston Pressure Swing Adsorption (DP-PSA) system. The inset shows the position of the 4 thermocouples inside the column.

- Cycle times from seconds to minutes
- Different pressure ratios and profiles
- Measurements:
 - Absolute pressure and pressure drop
 - Two pairs of thermocouples along the column length
 - In each pair one in the gas phase and one inside a 13X pellet

Figure 2. Schematic showing the DP-PSA system

Comparison of the experimental data with simulations

Pressure profile

- Pressure profile depends mainly on piston position and thus system volume
- Minor influence of fluid temperature
- Experimental pressure profile agrees with simulated pressure profile

Figure 3. Comparison of the simulated and measured pressure for a helium run. Also shown is the position of the two pistons.

Temperature profile

- For non-adsorbing gases the fluid temperature depends on the compression and wall heat transfer
- Measured temperature profile lags behind the simulated temperature
- Simulated and measured temperature profiles agree if the thermocouple (TC) response is included

Figure 4. Comparison of the measured and simulated temperature profile for a helium run

Heat transfer between the fluid and solid phase

Temperature profile

- The solid lags behind the fluid temperature due to gas/solid heat transfer
- The temperature profile for a fast cycle $(t_c=2s)$ shows that the thermocouples are responsive enough to capture the

temperature swing in the fluid phase

• The CO₂ runs in Figure 6 show the effect of mass transfer and heat of adsorption on the solid phase temperature

Conclusion

 Good agreement between the simulated and experimental profiles

 Heat transfer coefficients can be gained from helium runs and mass transfer coefficients from CO₂ runs

Figure 6. Comparison of the experimental fluid phase temperature (T_f) and solid phase temperature (T_s) profile for CO₂ runs at different cycle times (t_c)

References

Acknowledgements

Financial support from the Engineering and Physical Sciences Research Council, grants EP/F034520/1 and EP/G062129/1, is gratefully acknowledged.

1. Friedrich, Ferrari, Brandani: Efficient Simulation and Acceleration of Convergence for a Dual Piston Pressure Swing Adsorption System, Industrial & Engineering Chemistry Research, 2013. 2. Dang, Friedrich, Brandani: Characterisation of an automated Dual Piston Pressure Swing Adsorption (DP-PSA) system, Energy Procedia, in press.

Figure 5. Comparison of the experimental

fluid phase temperature (T_f) and solid

phase temperature (T_s) profile for helium

runs at different cycle times (t_c)