EP/F034520/1 Science and Innovation Award: Carbon Capture from Power Plant and Atmosphere

This project will run from June 2008 until May 2013. £1.3M was awarded to the Institute of Materials and Processes. Advanced carbon capture technologies based on adsorption and membrane processes will be developed.

Energy supply for the UK, and for the world as a whole, will experience major changes during the next 20 years, as states seek to secure energy supplies, combined with low costs, and sustainable environmental impacts. Most of the world's energy currently derives from the combustion of fossil fuel; the UK is no exception.

In the UK, fossil fuel (oil) dominates transport use, and this is unlikely to change in the near future. Electricity and heat generation is dominated by gas (41%) and coal (34%), with 20% from nuclear, only 3% from renewables, and 2% imported electricity. This gas and coal will from now on be largely imported, paying costs to suppliers outside the UK. This also means security of supply is not guaranteed. Can improvements be made to the use of these energy sources?

A key environmental problem is that fossil fuel combustion releases CO2 to the atmosphere. This is now, beyond reasonable doubt, linked to global warming and climate change. Atmospheric CO2 also dissolves in ocean water, forcing an increased acidity greater than any time in the past 20 Million years. Even those who still do not believe in climate change cannot escape the inevitability of ocean acidification / with as yet un-predicted consequences. For this reason alone, atmospheric CO2 must be reduced.

To enable continued use of fossil fuels it is an urgent requirement to de-carbonise their combustion. The Stern Review of Climate Change Economics in 2006 clearly re-stated that significant progress must be made during the ten years until 2017.

This research proposal addresses the fossil fuel issues in two ways:

Firstly, to create a UK Centre of university expertise in the capture of CO2 from power plants. Current industrial systems rely on chemical absorption by solvents, but require a very high energy input, which reduces the environmental gain. The Centre will focus on new technologies of CO2 separation by adsorption onto nanoporous materials, by "filtration" of CO2 from power plant flue gases by semi-permeable membranes, and by membrane and adsorption separation processes for the production of oxygen from air, to enable oxy-fuel combustion and efficient CO2 separation.

Secondly, we acknowledge that there is, and will be, a need to remove existing CO2 emissions from the atmosphere. The reductions proposed from power plant emissions do not reduce existing CO2, but rather just make the increase slower. To control the earth atmosphere and produce a sustainable climate requires extraction of CO2 already emitted. This is routinely achieved, at low cost, by vegetation. We will create an entirely new centre of university expertise which will focus on using bio-mass from agriculture, forestry and waste. This can firstly make bio-fuel to replace fossil sources, and the residues can be pyrolised to form charcoal. Such charcoal has been used in traditional cultures to enhance soil fertility, and locks up carbon for thousands of years. Improvements in land use in the EU, the USA, and the developing world can achieve this, by an integration of engineering, soil science, and social benefit to cultivators.

Outputs from the Centre can help the UK to combust coal and gas with environmentally clean methods, to enhance energy security by diversifying away from fossil fuel sources, and to commence the direct clean-up of CO2 from the atmosphere in an energy and financially efficient, sustainable way.

For more information: www.epsrc.ac.uk.